 Home
 Quantitative
 English
 Reasoning
 IT Officer
 Programming

Computer
 Computer Awareness Questions Answers  Set 1
 Computer Awareness Questions Answers  Set 2
 Important Abbreviations Computer Awareness Questions Answers
 Important File Extensions Questions Answers
 Computer System Architecture Questions Answers
 MS Office Questions Answers
 MS Excel Questions Answers
 MS PowerPoint Questions Answers

GK
 Geography Questions Answers
 Indian History Questions Answers
 World History Questions Answers
 Indian Economy Questions Answers
 Indian Polity and Constitution
 Physics Questions Answers
 Chemistry Questions Answers
 Biology Questions Answers
 First In India
 First In World
 Longest and Largest
 Books and Authors
 Important Days of year
 Countries and Capitals
 Inventions and Inventors

Current Affairs
 Current Affairs
 Current Affairs 2016
 Current Affairs 2016 PDF
 Current Affairs August 2016
 Current Affairs July 2016
 Current Affairs June 2016
 Current Affairs May 2016
 Current Affairs April 2016
 Current Affairs March 2016
 Current Affairs February 2016
 Current Affairs January 2016
 Current Affairs 2015
 Govt Jobs
 Online Quiz
 You are here
 Home
 Quantitative Aptitude
 Arithmetic Aptitude Questions Answers
 Pipes and Cisterns Questions Answers
 Aptitude Question
 Current Affairs 2016
 Current Affairs 2015
 Current Affairs January 2015
 Current Affairs February 2015
 Current Affairs March 2015
 Current Affairs April 2015
 Current Affairs May 2015
 Current Affairs June 2015
 Current Affairs July 2015
 Current Affairs August 2015
 Current Affairs September 2015
 Current Affairs October 2015
 Current Affairs November 2015
 Current Affairs December 2015
 Current Affairs 2015
 Current Affairs PDF
Question Detail
A tap can fill a tank in 6 hours. After half the tank is filled then 3 more similar taps are opened. What will be total time taken to fill the tank completely.
 2 hours 30 mins
 2 hours 45 mins
 3 hours 30 mins
 3 hours 45 mins
Answer: Option D
Explanation:
Half tank will be filled in 3 hours
Lets calculate remaining half,
Part filled by the four taps in 1 hour = 4*(1/6) = 2/3
Remaining part after 1/2 filled = 11/2 = 1/2
\begin{aligned}
\frac{2}{3}:\frac{1}{2}::1:X \\
=> X = \left( \frac{1}{2}*1*{3}{2} \right) \\
=> X = \frac{3}{4} hrs = 45 \text{ mins} \\
\end{aligned}
Total time = 3 hours + 45 mins = 3 hours 45 mins
1. A water tank is twofifth full. Pipe A can fill a tank in 10 minutes and pipe B can empty in 6 minutes. If both the pipes are open, how long will it take to empty or fill the tank completely ?
 6 min to empty
 7 min to full
 6 min to full
 7 min to empty
Answer: Option A
Explanation:
There are two important points to learn in this type of question,
First, if both will open then tank will be empty first.
Second most important thing is,
If we are calculating filling of tank then we will subtract as (fillingempting)
If we are calculating empting of thank then we will subtract as (emptingfilling)
So lets come on the question now,
Part to emptied 2/5
Part emptied in 1 minute =
\begin{aligned}
\frac{1}{6}  \frac{1}{10} \\
= \frac{1}{15} \\
=> \frac{1}{15}:\frac{2}{5}::1:x \\
=> \frac{2}{5}*15 = 6 mins
\end{aligned}
2. A tap can fill a tank in 6 hours. After half the tank is filled then 3 more similar taps are opened. What will be total time taken to fill the tank completely.
 2 hours 30 mins
 2 hours 45 mins
 3 hours 30 mins
 3 hours 45 mins
Answer: Option D
Explanation:
Half tank will be filled in 3 hours
Lets calculate remaining half,
Part filled by the four taps in 1 hour = 4*(1/6) = 2/3
Remaining part after 1/2 filled = 11/2 = 1/2
\begin{aligned}
\frac{2}{3}:\frac{1}{2}::1:X \\
=> X = \left( \frac{1}{2}*1*{3}{2} \right) \\
=> X = \frac{3}{4} hrs = 45 \text{ mins} \\
\end{aligned}
Total time = 3 hours + 45 mins = 3 hours 45 mins
3. A tank can be filled by two pipes A and B in 60 minutes and 40 minutes respectively. How many minutes will it take to fill the tank from empty state if B is used for the first half time and then A and B fill it together for the other half.
 15 mins
 20 mins
 25 mins
 30 mins
Answer: Option D
Explanation:
Let the total time be x mins.
Part filled in first half means in x/2 = 1/40
Part filled in second half means in x/2 = \begin{aligned}
\frac{1}{60}+\frac{1}{40} \\
= \frac{1}{24} \\
\text{ Total = } \\
\frac{x}{2}*\frac{1}{40} + \frac{x}{2}*\frac{1}{24} = 1 \\
=> \frac{x}{2} \left(\frac{1}{40}+\frac{1}{24} \right) = 1 \\
=> \frac{x}{2}*\frac{1}{15} = 1 \\
=> x = 30 mins
\end{aligned}
4. Pipe A can fill a tank in 5 hours, pipe B in 10 hours and pipe C in 30 hours. If all the pipes are open, in how many hours will the tank be filled ?
 2.5 hours
 2 hours
 3.5 hours
 3 hours
Answer: Option D
Explanation:
Part filled by A in 1 hour = 1/5
Part filled by B in 1 hour = 1/10
Part filled by C in 1 hour = 1/30
Part filled by (A+B+C) in 1 hour =
\begin{aligned}
\frac{1}{5}+\frac{1}{10}+\frac{1}{30} \\
= \frac{1}{3} \\
\end{aligned}
So all pipes will fill the tank in 3 hours.
5. Two pipes A and B can fill a tank in 6 hours and 4 hours respectively. If they are opened on alternate hours and if pipe A is opened first, in how many hours, the tank shall be full ?
 3 hours
 5 hours
 7 hours
 10 hours
Answer: Option B
Explanation:
(A+B)'s 2 hour's work when opened =
\begin{aligned}
\frac{1}{6}+\frac{1}{4} = \frac{5}{12} \\
(A+B)'s \text{ 4 hour's work} = \frac{5}{12}*2 \\
= \frac{5}{6}
\text{Remaining work = } 1\frac{5}{6} \\
= \frac{1}{6} \\
\text{Now, its A turn in 5 th hour} \\
\frac{1}{6} \text{ work will be done by A in 1 hour}\\
\text{Total time = }4+1 = 5 hours
\end{aligned}
 Copyright 2014  All rights reserved
 Terms Of Use & Privacy Policy
 Copyright
 Contact Us