Question Detail
3034 - (1002 / 20.04) = ?
- 2984
- 2983
- 2982
- 2981
Answer: Option A
1. Simplify
(31/10) * (3/10) + (7/5) / 20
- 0
- 1
- 10
- 100
Answer: Option B
Explanation:
= (31/10) * (3/10) + (7/5) / 20
= (3.1) * (.3) + (1.4) / 20
= 0.93 + 0.07
= 1
2. What fraction of \begin{aligned} \frac{4}{7}\end{aligned} should be added to itself to become \begin{aligned} 1\frac{1}{14} \end{aligned}
- \begin{aligned} \frac{7}{8} \end{aligned}
- \begin{aligned} \frac{7}{9} \end{aligned}
- \begin{aligned} \frac{7}{10} \end{aligned}
- \begin{aligned} \frac{7}{11} \end{aligned}
Answer: Option A
Explanation:
\begin{aligned}
=> \frac{4}{7}x + \frac{4}{7} = \frac{15}{4}
\end{aligned}
\begin{aligned}
= \frac{4}{7}x = \frac{15}{4} - \frac{4}{7}
\end{aligned}
\begin{aligned}
= \frac{4}{7}x = \frac{7}{14}
\end{aligned}
\begin{aligned}
= x = \frac{1}{2}\times \frac{7}{4} = \frac{7}{8}
\end{aligned}
3. In a group of ducks and buffaloes, the total number of legs are 24 more than twice the number of heads. Find the total number of buffaloes.
- 8
- 10
- 12
- 14
Answer: Option C
Explanation:
Let the number of buffaloes be x and the number of ducks be y
=> 4x + 2y = 2 (x + y) + 24
=> 2x = 24 => x = 12
4. Simplify
\begin{aligned} 1+\frac{1}{2}+\frac{1}{4}+\frac{1}{7}+\frac{1}{14}+\frac{1}{28} = ? \end{aligned}
- 2
- 2.3
- 2.6
- 5
Answer: Option A
Explanation:
By taking LCM we get
=\begin{aligned} \frac{28+14+7+4+2+1}{28}
= \frac{56}{28} = 2\end{aligned}
5. Value of
\begin{aligned}
\frac{1}{2+\frac{1}{2+\frac{1}{2-\frac{1}{2}}}}
\end{aligned}
- \begin{aligned} \frac{6}{19} \end{aligned}
- \begin{aligned} \frac{7}{19} \end{aligned}
- \begin{aligned} \frac{8}{19} \end{aligned}
- \begin{aligned} \frac{9}{19} \end{aligned}
Answer: Option C
Explanation:
\begin{aligned}
= \frac{1}{2+\frac{1}{2+\frac{1}{\frac{3}{2}}}}
\end{aligned}
\begin{aligned}
= \frac{1}{2+\frac{1}{2+\frac{2}{3}}}
\end{aligned}
\begin{aligned}
= \frac{1}{2+\frac{1}{\frac{8}{3}}}
\end{aligned}
\begin{aligned}
= \frac{1}{2+\frac{3}{8}}
\end{aligned}
\begin{aligned}
= \frac{1}{\frac{19}{8}}
\end{aligned}
\begin{aligned}
= \frac{8}{19}
\end{aligned}