Question Detail
\begin{aligned} \sqrt{0.00059049} \end{aligned}
- 24.3
- 2.43
- 0.243
- 0.0243
Answer: Option D
1. \begin{aligned} \sqrt{\frac{32.4}{x}} = 2 \end{aligned}
- 8
- 8.1
- 9
- 9.1
Answer: Option B
2. \begin{aligned}
(\frac{\sqrt{625}}{11} \times \frac{14}{\sqrt{25}} \times \frac{11}{\sqrt{196}})
\end{aligned}
- 15
- 7
- 5
- 9
Answer: Option C
Explanation:
\begin{aligned}
= (\frac{25}{11} \times \frac{14}{5} \times \frac{11}{14})
\end{aligned}
\begin{aligned}
= 5
\end{aligned}
3. \begin{aligned}
\sqrt{41 - \sqrt{21 + \sqrt{19 - \sqrt{9}}}}
\end{aligned}
- 4
- 26
- 16
- 6
Answer: Option D
Explanation:
\begin{aligned}
= \sqrt{41 - \sqrt{21 + \sqrt{19 - 3}}}
\end{aligned}
\begin{aligned}
= \sqrt{41 - \sqrt{21 + \sqrt{16}}}
\end{aligned}
\begin{aligned}
= \sqrt{41 - \sqrt{21 + 4}}
\end{aligned}
\begin{aligned}
= \sqrt{41 - \sqrt{25}}
\end{aligned}
\begin{aligned}
= \sqrt{41 - \sqrt{25}}
\end{aligned}
\begin{aligned}
= \sqrt{41 - 5}
\end{aligned}
\begin{aligned}
= \sqrt{36} = 6
\end{aligned}
4. Evaluate
\begin{aligned}
\sqrt{10+\sqrt{25+\sqrt{108+\sqrt{154+\sqrt{225}}}}}
\end{aligned}
- 16
- 8
- 6
- 4
Answer: Option D
Explanation:
\begin{aligned}
= \sqrt{10+\sqrt{25+\sqrt{108+\sqrt{154+\sqrt{225}}}}}
\end{aligned}
\begin{aligned}
=\sqrt{10+\sqrt{25+\sqrt{108+\sqrt{154+15}}}}
\end{aligned}
\begin{aligned}
=\sqrt{10+\sqrt{25+\sqrt{108+\sqrt{154+15}}}}
\end{aligned}
\begin{aligned}
=\sqrt{10+\sqrt{25+\sqrt{108+\sqrt{169}}}}
\end{aligned}
\begin{aligned}
=\sqrt{10+\sqrt{25+\sqrt{108+13}}}
\end{aligned}
\begin{aligned}
=\sqrt{10+\sqrt{25+\sqrt{121}}}
\end{aligned}
\begin{aligned}
=\sqrt{10+\sqrt{25+11}}
\end{aligned}
\begin{aligned}
=\sqrt{10+\sqrt{36}}
\end{aligned}
\begin{aligned}
=\sqrt{10+6}
\end{aligned}
\begin{aligned}
=\sqrt{16} = 4
\end{aligned}
5. The cube root of .000216 is
- 0.6
- 0.006
- 0.06
- .0006
Answer: Option C