Question Detail \begin{aligned} \sqrt{\frac{0.081 * 0.484 }{0.0064 * 6.25}} \end{aligned} 0.660.770.880.99 Answer: Option D Similar Questions : 1. \begin{aligned} \sqrt{41 - \sqrt{21 + \sqrt{19 - \sqrt{9}}}} \end{aligned} 426166 Answer: Option DExplanation: \begin{aligned} = \sqrt{41 - \sqrt{21 + \sqrt{19 - 3}}} \end{aligned} \begin{aligned} = \sqrt{41 - \sqrt{21 + \sqrt{16}}} \end{aligned} \begin{aligned} = \sqrt{41 - \sqrt{21 + 4}} \end{aligned} \begin{aligned} = \sqrt{41 - \sqrt{25}} \end{aligned} \begin{aligned} = \sqrt{41 - \sqrt{25}} \end{aligned} \begin{aligned} = \sqrt{41 - 5} \end{aligned} \begin{aligned} = \sqrt{36} = 6 \end{aligned} 2. Evaluate \begin{aligned} \sqrt{53824} \end{aligned} 132232242253 Answer: Option B 3. \begin{aligned} (\frac{\sqrt{625}}{11} \times \frac{14}{\sqrt{25}} \times \frac{11}{\sqrt{196}}) \end{aligned} 15759 Answer: Option CExplanation:\begin{aligned} = (\frac{25}{11} \times \frac{14}{5} \times \frac{11}{14}) \end{aligned} \begin{aligned} = 5 \end{aligned} 4. Evaluate \begin{aligned} \sqrt{0.00059049} \end{aligned} 0.002430.02430.2432.43 Answer: Option BExplanation:Very obvious tip here is, after squre root the terms after decimal will be half (that is just a trick), works awesome at many questions like this. 5. Evaluate \begin{aligned} \sqrt[3]{\sqrt{.000064}} \end{aligned} 0.00020.0020.020.2 Answer: Option DExplanation:\begin{aligned} = \sqrt{.000064} \end{aligned} \begin{aligned} = \sqrt{\frac{64}{10^6}} \end{aligned} \begin{aligned} = \frac{8}{10^3} = .008 \end{aligned} \begin{aligned} = \sqrt[3]{.008} \end{aligned} \begin{aligned} = \sqrt[3]{\frac{8}{1000}} \end{aligned} \begin{aligned} = \frac{2}{10} = 0.2 \end{aligned} Read more from - Square Root and Cube Root Questions Answers