Question Detail
Evaluate
\begin{aligned}
\sqrt{53824}
\end{aligned}
- 132
- 232
- 242
- 253
Answer: Option B
1. Evaluate
\begin{aligned}
\sqrt{53824}
\end{aligned}
- 132
- 232
- 242
- 253
Answer: Option B
2. Evaluate \begin{aligned} \sqrt[3]{\sqrt{.000064}} \end{aligned}
- 0.0002
- 0.002
- 0.02
- 0.2
Answer: Option D
Explanation:
\begin{aligned} = \sqrt{.000064} \end{aligned}
\begin{aligned} = \sqrt{\frac{64}{10^6}} \end{aligned}
\begin{aligned} = \frac{8}{10^3} = .008 \end{aligned}
\begin{aligned} = \sqrt[3]{.008} \end{aligned}
\begin{aligned} = \sqrt[3]{\frac{8}{1000}} \end{aligned}
\begin{aligned} = \frac{2}{10} = 0.2 \end{aligned}
3. \begin{aligned}
\sqrt{41 - \sqrt{21 + \sqrt{19 - \sqrt{9}}}}
\end{aligned}
- 4
- 26
- 16
- 6
Answer: Option D
Explanation:
\begin{aligned}
= \sqrt{41 - \sqrt{21 + \sqrt{19 - 3}}}
\end{aligned}
\begin{aligned}
= \sqrt{41 - \sqrt{21 + \sqrt{16}}}
\end{aligned}
\begin{aligned}
= \sqrt{41 - \sqrt{21 + 4}}
\end{aligned}
\begin{aligned}
= \sqrt{41 - \sqrt{25}}
\end{aligned}
\begin{aligned}
= \sqrt{41 - \sqrt{25}}
\end{aligned}
\begin{aligned}
= \sqrt{41 - 5}
\end{aligned}
\begin{aligned}
= \sqrt{36} = 6
\end{aligned}
4. The least perfect square, which is divisible by each of 21, 36 and 66 is
- 213414
- 213424
- 213434
- 213444
Answer: Option D
Explanation:
L.C.M. of 21, 36, 66 = 2772
Now, 2772 = 2 x 2 x 3 x 3 x 7 x 11
To make it a perfect square, it must be multiplied by 7 x 11.
So, required number = 2 x 2 x 3 x 3 x 7 x 7 x 11 x 11 = 213444
5. Evaluate
\begin{aligned}
\sqrt{10+\sqrt{25+\sqrt{108+\sqrt{154+\sqrt{225}}}}}
\end{aligned}
- 16
- 8
- 6
- 4
Answer: Option D
Explanation:
\begin{aligned}
= \sqrt{10+\sqrt{25+\sqrt{108+\sqrt{154+\sqrt{225}}}}}
\end{aligned}
\begin{aligned}
=\sqrt{10+\sqrt{25+\sqrt{108+\sqrt{154+15}}}}
\end{aligned}
\begin{aligned}
=\sqrt{10+\sqrt{25+\sqrt{108+\sqrt{154+15}}}}
\end{aligned}
\begin{aligned}
=\sqrt{10+\sqrt{25+\sqrt{108+\sqrt{169}}}}
\end{aligned}
\begin{aligned}
=\sqrt{10+\sqrt{25+\sqrt{108+13}}}
\end{aligned}
\begin{aligned}
=\sqrt{10+\sqrt{25+\sqrt{121}}}
\end{aligned}
\begin{aligned}
=\sqrt{10+\sqrt{25+11}}
\end{aligned}
\begin{aligned}
=\sqrt{10+\sqrt{36}}
\end{aligned}
\begin{aligned}
=\sqrt{10+6}
\end{aligned}
\begin{aligned}
=\sqrt{16} = 4
\end{aligned}