Question Detail
Evaluate
\begin{aligned}
\sqrt{6084}
\end{aligned}
- 75
- 77
- 78
- 68
Answer: Option C
1. \begin{aligned} \sqrt{0.00059049} \end{aligned}
- 24.3
- 2.43
- 0.243
- 0.0243
Answer: Option D
2. Evaluate
\begin{aligned}
\sqrt{1\frac{9}{16}}
\end{aligned}
- \begin{aligned} 1\frac{1}{6} \end{aligned}
- \begin{aligned} 1\frac{1}{5} \end{aligned}
- \begin{aligned} 1\frac{1}{4} \end{aligned}
- \begin{aligned} 1\frac{1}{3} \end{aligned}
Answer: Option C
Explanation:
\begin{aligned}
= \sqrt{\frac{25}{16}}
\end{aligned}
\begin{aligned}
= \frac{\sqrt{25}}{\sqrt{16}}
\end{aligned}
\begin{aligned}
= \frac{5}{4}
\end{aligned}
\begin{aligned}
= 1\frac{1}{4}
\end{aligned}
3. Find the value of x
\begin{aligned}
\frac{2707}{\sqrt{x}} = 27.07
\end{aligned}
- 1000
- 10000
- 10000000
- None of above
Answer: Option B
Explanation:
\begin{aligned}
= \frac{2707}{27.07} = \sqrt{x}
\end{aligned}
\begin{aligned}
=> \frac{2707 \times 100}{2707} = \sqrt{x}
\end{aligned}
\begin{aligned}
=> 100 = \sqrt{x}
\end{aligned}
\begin{aligned}
=> x = 100^2 = 10000
\end{aligned}
4. Evaluate
\begin{aligned}
\sqrt{0.00059049}
\end{aligned}
- 0.00243
- 0.0243
- 0.243
- 2.43
Answer: Option B
Explanation:
Very obvious tip here is, after squre root the terms after decimal will be half (that is just a trick), works awesome at many questions like this.
5. Find the value of X
\begin{aligned} \sqrt{81} + \sqrt{0.81} = 10.09 - X \end{aligned}
- 0.019
- 0.19
- 0.9
- 0.109
Answer: Option B
Explanation:
\begin{aligned}
=> \sqrt{81} + \sqrt{0.81} = 10.09 - X
\end{aligned}
\begin{aligned}
=> 9 + 0.9 = 10.09 - X
\end{aligned}
\begin{aligned}
=> X = 10.09 - 9.9 = 0.19
\end{aligned}