Question Detail

If m and n are whole numbers such that
\begin{aligned} m^n=121 \end{aligned}
, the value of \begin{aligned} (m-1)^{n + 1} \end{aligned} is

  • 1
  • 10
  • 100
  • 1000
Similar Questions :

1. Find the value of,
\begin{aligned}
\frac{1}{216^{-\frac{2}{3}}}+\frac{1}{256^{-\frac{3}{4}}}+\frac{1}{32^{-\frac{1}{5}}}
\end{aligned}

  • 100
  • 101
  • 102
  • 103

2. Find the value of
\begin{aligned} (10)^{150} \div (10)^{146} \end{aligned}

  • 10
  • 100
  • 1000
  • 10000

3. Evaluate \begin{aligned} 256^{0.16} \times (256)^{0.09} \end{aligned}

  • 2
  • 4
  • 8
  • 16

4. \begin{aligned} (1000)^7 \div (10)^{18} = ? \end{aligned}

  • 10
  • 100
  • 1000
  • 10000

5. \begin{aligned}
\text{If } 3^{x-y} = 27 \text{ and } 3^{x+y} = 243, \\
\text{ then find the value of x }
\end{aligned}

  • 1
  • 2
  • 3
  • 4
Read more from - Surds and Indices Questions Answers